
RESEARCH ARTICLE

Factors that affect migratory Western Atlantic

red knots (Calidris canutus rufa) and their prey

during spring staging on Virginia’s barrier

islands

Erin L. Heller1¤*, Sarah M. KarpantyID
1*, Jonathan B. Cohen2, Daniel H. Catlin1, Shannon

J. Ritter1, Barry R. Truitt3, James D. Fraser1*

1 Department of Fish and Wildlife Conservation, Virginia Tech, Blacksburg, Virginia, United States of

America, 2 Department of Environmental and Forest Biology, The State University of New York, Syracuse,

NY, United States of America, 3 The Nature Conservancy, Virginia Coast Reserve, Nassawadox, VA, United

States of America

¤ Current address: Biology Department, Randolph College, Lynchburg, VA, United States of America

* elheller@vt.edu (EH); karpanty@vt.edu (SK); fraser@vt.edu (JF)

Abstract

Understanding factors that influence a species’ distribution and abundance across the

annual cycle is required for range-wide conservation. Thousands of imperiled red knots

(Calidris cantus rufa) stop on Virginia’s barrier islands each year to replenish fat during

spring migration. We investigated the variation in red knot presence and flock size, the

effects of prey on this variation, and factors influencing prey abundance on Virginia’s barrier

islands. We counted red knots and collected potential prey samples at randomly selected

sites from 2007–2018 during a two-week period during early and peak migration. Core sam-

ples contained crustaceans (Orders Amphipoda and Calanoida), blue mussels (Mytilus edu-

lis), coquina clams (Donax variabilis), and miscellaneous prey (horseshoe crab eggs

(Limulus polyphemus), angel wing clams (Cyrtopleura costata), and other organisms (e.g.,

insect larvae, snails, worms)). Estimated red knot peak counts in Virginia during 21–27 May

were highest in 2012 (11,959) and lowest in 2014 (2,857; 12-year peak migration �x = 7,175,

SD = 2,869). Red knot and prey numbers varied across sampling periods and substrates

(i.e., peat and sand). Red knots generally used sites with more prey. Miscellaneous prey (�x
= 2401.00/m2, SE = 169.16) influenced red knot presence at a site early in migration, when

we only sampled on peat banks. Coquina clams (�x = 1383.54/m2, SE = 125.32) and blue

mussels (�x = 777.91/m2, SE = 259.31) affected red knot presence at a site during peak

migration, when we sampled both substrates. Few relationships between prey and red knot

flock size existed, suggesting that other unmeasured factors determined red knot numbers

at occupied sites. Tide and mean daily water temperature affected prey abundance. Maxi-

mizing the diversity, availability, and abundance of prey for red knots on barrier islands

requires management that encourages the presence of both sand and peat bank intertidal

habitats.
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Introduction

Species conservation requires an understanding of the factors that influence a species’ distribu-

tion and abundance [1,2]. Understanding the factors that affect migratory species throughout

their annual cycles is challenging, though of great importance [3,4]. Staging sites enable ani-

mals to migrate long distances in large jumps over relatively short time periods by providing

abundant and predictable food so migrants can replenish fat stores and rest mid-migration [4–

9]. Migratory shorebirds must be adaptable to variation in food availability on staging sites

[10,11]. Anthropogenic and climate–related factors have led to the rapid loss and degradation

of staging sites, amplifying the importance of remaining habitat and food availability for

migratory shorebirds [12–18].

The Western Atlantic red knot (Calidris canutus rufa; ‘red knot’), listed as federally-threat-

ened in the United States (U. S.) and endangered in Canada, has one of the longest migrations

in the western hemisphere, travelling from boreal wintering grounds as far south as Tierra del

Fuego, Argentina, to breeding grounds in the Canadian Arctic [19,20]. Due to its imperiled

status, recognized after large declines in the mid-1990s [21–24], and long migration, red knot

staging ecology often is viewed as an exemplar of the challenges faced by long–distance

migrant shorebirds [25,26].

Large numbers of red knots historically frequented North American stopover sites on

coastal beaches from Florida to Massachusetts [12,27]. However, while thousands of red knots

continue to use coastal beaches on the United States’ Atlantic Coast [23], most of them now

stop at two staging sites each spring migration: the Delaware Bay and Virginia’s barrier islands

[20,28,29]. Despite the relatively short distance between the two sites (~125 km), only about

5% of red knots move between these sites in a given year, and red knots remain at both sites

for approximately 2 weeks [29]. Additionally, Cohen et al. [29] found that radiotagged red

knots rarely left the site where they were tagged before late May to early June, the time when

most red knots on the Atlantic Coast leave for the Arctic. These findings suggest that Virginia

and the Delaware Bay are primarily independent staging sites within years.

Historically, much attention was given to red knots using the Delaware Bay spring staging

site [29–31], as it consistently supports between about 50–70% of the annual spring migrating

population of red knots, at higher densities compared to Virginia’s barrier islands (on average

291 red knots/km shoreline in Delaware Bay vs. 81 red knots/km in Virginia [29–31]). The

large number of red knots using the Delaware Bay staging site each spring usually is attributed

to the abundance of Atlantic horseshoe crab eggs (Limulus polyphemus [30–37]).

Although red knots feed primarily on horseshoe crab eggs in the Delaware Bay [30,32–34],

they feed on hard-shelled bivalves throughout most of their migration and boreal wintering

ranges [38–40]. The red knot’s reliance on bivalves includes its Virginia spring staging site,

where coquina clams (Donax variabilis) and blue mussels (Mytilus edulis) have been described

as the most abundant and used prey resources by red knots [31,41]. Further, Heller [42] used

fecal DNA metabarcoding analyses to confirm that red knots consumed bivalves (Orders

Venerida and Mytiloida) in Virginia and found that red knots also consumed crustaceans

(Orders Amphipoda and Calanoida) and insect larvae (Order Diptera).

Numerous studies have demonstrated positive correlations between waterbird numbers

and invertebrate prey [14,28,43–45]. Because red knots likely track prey resources in space and

time [32,46], and different prey species may be available in different habitats at different tides,

red knots may shift foraging locations throughout the day to maximize foraging efficiency

[47]. Some uncertainty remains concerning the influence that prey may have on red knot dis-

tribution and flock size on Virginia’s barrier islands. For example, Cohen et al. [41] suggested

that coquina clams, which live primarily in sand, were the dominant prey item for red knots in
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Virginia. Watts and Truitt [26], however, suggested that by the start of the red knot’s peak

migration, red knots used peat banks, where blue mussels and other prey primarily live, ten-

times more than sand. Although studies have been conducted on the prey that red knots

potentially consume in Virginia [26,41], these were limited to short–term datasets (� 2 years)

and did not fully address all potential prey resources.

To gain a better understanding of how many red knots use Virginia’s barrier islands each

spring migration and how numerous factors affect both red knot and prey abundance, our

objectives were to determine: 1) the peak counts annually of red knots using Virginia’s barrier

islands during peak migration (May 21–27) from 2007–2018, 2) if prey other than coquina

clams and blue mussels were available to red knots over an extended (> 2 years) time, 3) if and

how red knot and prey numbers varied between sampling periods and substrates, 4) if there

were differences in prey abundances between sites used and unused by red knots, 5) if red

knot presence and flock size were influenced by prey in Virginia, 6) if red knot presence and

flock size in Virginia were influenced by an index of the number of red knots in the flyway

(i.e., using boreal wintering red knot counts in Tierra del Fuego as one index for the flyway

population), and 7) what factors affected prey abundance in Virginia over time and space.

Study area

We studied red knots on eleven barrier islands in the Virginia Coast Reserve Long-Term Eco-

logical Research site from Assawoman Island in the north to Fisherman Island in the south

(Fig 1; 37˚23.7’N, 75˚42.5’W [29]). The combined barrier island shoreline extends approxi-

mately 82 km and is bounded by the Atlantic Ocean on the east and a shallow lagoon system

with open water, mudflats, and Spartina spp. marsh on the open bays to the west, between the

barrier islands and the Delmarva Peninsula mainland [29,48]. The islands are separated from

each other by a series of channels and shallow marshes that follow Virginia’s coastline within

the Delmarva Peninsula [49]. The islands are predominantly uninhabited and undeveloped,

accessible primarily by boat, and experience little anthropogenic activity.

We sampled red knots and invertebrate prey on 11 of these barrier islands, which together

comprise approximately 82 km of Atlantic Ocean intertidal shoreline, from Assawoman Island

in the north to Fisherman Island in the south, May 2007–2018. Basemap content is the intellec-

tual property of Esri and is used herein with permission (Copyright © 2022 Esri and its licen-

sors. All rights reserved). The inset aerial image from 2021 was acquired from the U.S.

Department of Agriculture’s National Agriculture Imagery Program (NAIP), available at [50]

from the Aerial Photography Field Office and shows an example of the location of 5 sample

locations on peat banks sampled during early migration on Metompkin Island, 2018 [51]. The

locations of all sample points from 2018 are visualized in S1 Fig. The geographic coordinates

and details on all sample points from 2007–2018 can be found [51].

The islands provide foraging habitat for migratory shorebirds preparing to breed or to con-

tinue migrating to breeding grounds farther north. These shorebirds forage principally on two

ocean intertidal substrates: sand and peat [26,41,52,53]. Large populations of coquina clams

are found in sandy intertidal zones, the most common intertidal substrate on Virginia’s barrier

islands [41,54]. Intertidal peat banks, which comprise about 6% of the shoreline, are formed

when outer beaches erode along low and narrow island segments that transgress over tidal

marshes on the bay side of the islands [55,56]. Although these peat banks are found sporadi-

cally across only some islands, they may support dense blue mussel and other invertebrate

populations [26,41,55]. The islands vary in their susceptibility to overwash and landward-

movement based partly on morphological characteristics, such as elevation. Low elevation

islands, in general, are narrow and lack vegetated dunes. These islands are thus prone to
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Fig 1. Study area on the Virginia Coast Reserve Long Term Ecological Research site consisting of barrier islands off the Eastern Shore of

Virginia.

https://doi.org/10.1371/journal.pone.0270224.g001
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overwash, enabling the formation of peat banks on the islands’ ocean side over time. Higher

elevation islands have well-developed, more vegetated dunes that help resist overwash events

and thus generally lack extensive peat banks [57,58]; however, high elevation islands can sus-

tain peat banks on lower elevation, narrow island segments.

Methods

Early and peak migration sampling of red knots and prey

We collected data on red knots and their invertebrate prey along the waterline of the Atlantic

Ocean intertidal zones on Virginia’s barrier islands each year from 2007–2018 (Figs 1 and S1,

[51]). Data collection occurred over two time periods from May 14–20 (‘early migration

period’) and May 21–27 (‘peak migration period’) 2007–2018, corresponding to the two weeks

of the red knot staging period during which red knots most abundantly use Virginia’s barrier

islands [29]. Cohen et al. [29] detailed that red knots use the Virginia barrier islands as staging

habitat from late April to early June each year, with numbers building through early May and

peaking during the week of May 21–27. Prior studies of radio-tagged red knots in Virginia

[29] also detailed that red knots used both peat and sandy substrates for foraging, but that peat

substrate was only available to the foraging red knots within 2-hrs of low tide.

Due to the logistical challenges of accessing peat substrate within two hours of low tide on

these remote island locations, we had to dedicate approximately one week of field effort each

year to sample this substrate type only to obtain adequate sample sizes for analyses of red knot

and prey abundances on peat substrate [41]. Given the remote locations of these islands, each

boat and field sampling crew could sample peat substrate only on one island per day given the

time to boat from the mainland to the island, and then to walk from a safe landing point to the

location of the peat substrate sampling areas, and then to walk back to the boat, all within 2

hours of low tide and within the constraints of sunrise and sunset times. We began sampling

approximately 50 random points per year along the waterline on peat substrate exclusively

during the red knot’s early migration (May 14–20; ‘early migration period’ based on [29]) in

2008. We sampled the random points on this peat substrate from two hours before low tide to

two hours after low tide, encompassing the last hour of falling tide, low tide, and the first hour

of rising tide, when peat was most exposed. Then, during the peak period of red knot migra-

tion in Virginia (21–27 May [29]), we sampled a new set of approximately 100 random points

along the waterline each year that fell in either substrate, sand or peat, depending on the tide

state at the time the sampling crews arrived at a point. Sampling by the field crews during the

peak migration sample period (21–27 May) was conducted irrespective of tide state; specifi-

cally, the crews left the mainland in boats near sunrise each day irrespective of tides. Given

that only 6% of the Virginia shoreline is peat substrate, most samples during peak migration

fell on sandy substrate, with fewer on peat substrate during peak migration.

The 50 random sample points on peat substrate during early migration each 14–20 May

and the 100 random points on sand or peat substrate during peak migration each 21–27 May

were generated to fall at least 200 m away from each other random point along the ocean inter-

tidal zone of each island each year. We used the Hawth’s Tools extension [59] in ArcGIS 10.1

[60], the Geospatial Modelling Environment extension [61] in ArcGIS 10.5 [62], and the most

recently available United States Department of Agriculture (USDA) Farm Service Agency’s

National Agriculture Imagery Program (NAIP) orthophotography imagery [63] to generate

these random sample points. The locations of randomly generated points varied by year and

the geographic locations for each point for each year are available in [51] and an example of

points from 2018 is available in S1 Fig. To determine the location of peat substrate on which to

generate random points each year for the early migration sampling period, we walked along
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the shore at low tide when peat substrate was exposed and recorded the location of the north

and south boundaries of peat banks greater than 1 m in length using hand-held GPS devices.

These data were cross-referenced with orthophotography imagery and were jointly used to

stratify random sampling points by substrate type. Not all islands contained peat banks in any

given year, and the number of points per island varied by island length.

Field sampling crews would navigate to each random point and count the number of non-

flying red knots, if present, within a 100 m radius semicircle of each point placed on the water

line. After red knots were counted, if present, or immediately if no red knots were present, we

sampled invertebrate prey availability by collecting a core sample of the substrate at the water-

line at each sampling point using a section of PVC piping (10 cm diameter x 3.5 cm deep; core

volume = 275 cm3). Thus, invertebrate prey samples were collected at all points, those with red

knots present and those without red knots present. We report prey results as number of organ-

isms/m2 to be comparable to other red knot prey studies and thus assume for purpose of calcu-

lation that all prey are on the surface so that the area sampled in each core is 0.00785 m2. The

core’s depth represented the approximate length of a red knot’s bill based on museum speci-

mens [64], so that we sampled only prey that red knots would be able to access while foraging.

The PVC was pushed into the substrate until the top was even with the substrate’s surface,

then a trowel was slipped under the PVC to prevent the substrate sample from falling out as

the PVC and core sample were retrieved. Samples were placed in a zipper-lock plastic bag,

returned to the lab, and frozen for future identification. We used a series of sieves, with the

smallest mesh size #40 (0.32 mm holes), and a dissecting microscope to sort and count the

number of invertebrates in each sample. We sorted prey by category (i.e., crustacean (Orders

Amphipoda and Calanoida [41]), blue mussel, coquina clam, miscellaneous–horseshoe crab

eggs, angel wing clams (Cyrtopleura costata), insect larvae, snails, worms that we were unable

to identify to species). We grouped these organisms as “miscellaneous” due to the relatively

low number of animals of each type collected.

Sand and peat tidal sampling of red knots and prey

To address how red knots and prey varied at the same location over the tidal cycle, we sampled

red knots and prey at the water line as the tide advanced and receded on sand (2013–2018)

and peat banks (2015–2018). Sampling dates occurred between May 17–28. For sand tidal

sampling, we counted the number of non-flying red knots, if present, within a 100 m radius

semicircle on the water line every hour for 12 hours, coinciding to the full tidal cycle. After

counting red knots, if present, or immediately if not present, we collected a core sample at the

water line. Each core sample was collected at a point directly in line with the previous point,

perpendicularly from the water’s edge, accounting for the changing water line as the tide

receded or advanced. The same methods were used for peat tidal sampling within the four-

hour period during which peat banks were most exposed: two hours before low tide to two

hours after low tide.

Prey spatial tidal sampling on peat and sand

To determine spatial variation of prey across the tidal cycle, we conducted spatial tidal sam-

pling on peat banks (May 17, 2019; Myrtle Island) and sand (May 20, 2019; Hog Island). We

collected core samples from a central location (0 m) and 5 m and 10 m in North and South

from the central location, along the water line, every hour. Peat spatial tidal sampling occurred

from two hours before to two hours after low tide, the period when peat was exposed. Due to

time constraints, sand spatial tidal sampling was conducted for only 5 hours between the rising

and falling tides, as opposed to during the full 12-hour tidal cycle.
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Ethics statement

All research was conducted in compliance with the laws of the United States of America and

followed the protocols of the Eastern Shore of Virginia National Wildlife Refuge (ESVNWR)

General Activities Special Use Permit # G19-04, ESVNWR Fisherman Island National Wildlife

Refuge Research and Monitoring Special Use Permit # R19-0, Virginia Department of Game

and Inland Fisheries Scientific Collection Permit # 064944, Chincoteague National Wildlife

Refuge Research and Monitoring Special Use Permit # 2019–010, Virginia Department of

Conservation and Recreation Division of Natural Heritage Natural Area Preserve Research

and Collecting Permit # RCP-ESR01-19 (renewal for ESR03-18), The Nature Conservancy

Research Permit, Commonwealth of Virginia Marine Resources Commission Permit # 19–

040, and Virginia Tech Institutional Animal Care and Use Committee permit number 16–244

(FWC). The islands sampled are protected and monitored by The Nature Conservancy, the

United States Fish and Wildlife Service, the Virginia Department of Game and Inland Fisher-

ies, and the Commonwealth of Virginia’s Department of Conservation and Recreation’s Natu-

ral Heritage Program.

Data analyses

Red knots over time and space. Shapiro-Wilk normality tests indicated that red knot

(W = 0.43, p< 0.001) and all prey abundance (W = 0.53, p< 0.001) data were not normally-

distributed during the early migration sample period (14–20 May). Shapiro-Wilk normality

tests also indicted that red knot (W = 0.23, p< 0.001) and all prey abundance (W = 0.37,

p< 0.001) data were not normally-distributed during the peak migration sampling period

(21–27 May). Therefore, we used Wilcoxon rank sum tests with Bonferroni correction to

determine if there were differences in red knot and prey numbers (i.e., crustacean, blue mussel,

coquina clam, miscellaneous prey, all prey) between 1) early and peak migration periods and

2) sites used vs. unused by red knots. We used a Pearson’s chi-square test to determine if mean

available prey from core samples differed in their community make-up on peat vs. sand during

the peak migration period. Then we used Wilcoxon rank sum tests with Bonferroni correction

to determine if any differences existed in mean prey abundances on peat and sand substrates

within the peak migration period.

Early and peak migration periods–red knot models. We used zero-inflated negative

binomial mixed-effects regression models to determine factors affecting red knot presence and

flock size in Virginia, as our data contained more 0s than expected based on the negative bino-

mial distribution and were overdispersed during both early and peak migration periods (�x red

knot flock size range: 0.14–29, variance range: 0.17–16,247, [65,66], S1 and S2 Tables). These

models included two processes. The zero-inflated process addressed the likelihood of observ-

ing more 0s (red knot absences) than expected given the covariates under the assumed nega-

tive binomial distribution. The count process measured the flock size of red knots (i.e., the

number of red knots at a given sampling point), which can include 0, conditional on the zero-

inflated part of the model [67]. We analyzed the effects of covariates on the likelihood of 1)

more site absences by red knots than expected based on the negative binomial distribution

[68] and 2) the abundance of red knots per 100 m radius semicircle on the water line at the

sampling point (‘flock size’) during both early (2008–2018, except 2010) and peak migration

(2007–2018) periods.

Explanatory variables considered included prey abundance (number/m2), tide, distance to

roost (m), and counts of red knots at the Tierra del Fuego boreal wintering grounds within the

same year. The counts of red knots at the Tierra del Fuego boreal wintering grounds served as

an index for the total number of red knots in the flyway [21,22]. Red knots marked in locations
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across the flyway have been resighted on Virginia’s barrier islands [69], but long-term and

robust counts of red knots in other locations outside of Delaware Bay were unavailable for

comparison across the time span of this study. Thus, the counts of Tierra del Fuego birds were

used as an index of red knots in the flyway since the Tierra del Fuego count data fully overlaps

the time period of this study and was independent from the U.S. mid-Atlantic Coast region in

which both Delaware Bay and Virginia staging sites exist. We characterized tide (i.e., high, fall-

ing, low, rising) from each sampling observation as: high within 1 hour of the predicted high,

falling from 1 hour after the predicted high to 1 hour before the predicted low, low within 1

hour of the predicted low, and rising from 1 hour after the predicted low to 1 hour before the

predicted high [41]. High tide was not sampled during the early migration period, as peat

banks typically were not exposed at high tide. Distance to roost was calculated as the distance

between each sampling point and known red knot night roosts on Chimney Pole and Wreck

Island [29,41]. The closer of the two distances/sample point was used for our analyses. We

compared all continuous covariates using Pearson correlation coefficients to identify highly

correlated covariate combinations (represented by values > |0.7| [70,71]). Highly correlated

combinations for early migration period and peak migration period were not included in our

model subsets (S3 Table). For all models, we included island and year as random effects to pre-

vent pseudoreplication of intra-island sampling units over time [72].

We used an information-theoretic approach (i.e., Akaike information criterion [73]) by

building an a priori candidate model set of sixty-eight models. We ranked these zero-inflated

negative binomial mixed-effects models using Akaike’s Information Criterion for small sample

sizes (AICc), with lower AICc values indicating better-supported models. Here, we report all

models with ΔAICc < 4 [74]. Full model sets are in S4 Table. Three models did not converge

during early migration period and were thus removed (S4 Table). We calculated goodness-of-

fit values based on Nagelkerke [75].

Early and peak migration periods–prey models. We used generalized linear mixed-

effects regression models to determine factors affecting potential red knot prey resources. We

analyzed the effects of covariates on different prey abundances per core sample during both

early (2008–2018, except 2010) and peak migration (2007–2018) periods. Explanatory vari-

ables included tide, mean daily water temperature (˚C), substrate (i.e., sand or peat), and island

type (i.e., high or low elevation). We characterized tide (i.e., high, falling, low, rising) from

each sampling observation as described above for red knot models. Mean daily water tempera-

tures were collected from buoy 44009 (Delaware Bay, DE; 38.457˚N, 74.702˚W), maintained

by National Oceanic and Atmospheric Administration’s (NOAA) National Data Buoy Center

(NDBC [76]). This buoy is located south of the Delaware-Maryland boundary (46 km south-

east of Cape May, New Jersey) and was selected as it was the closest buoy to our sampling area

that had ocean temperature data representing the entirety of our sampling years (2007–2018).

The buoy was 98.01 km north of Assawoman Island and 188.29 km north of Fisherman Island.

Substrate was not included in early migration period modeling, as only peat substrate was sam-

pled. Island type (i.e., high vs. low) was based off classifications done in Wolner et al. [57] and

Vinent and Moore [58] and our own visual assessments: Assawoman Island (high), Metomp-

kin Island (low), Cedar Island (low), Parramore Island (high), Hog Island (high), Cobb Island

(low), Wreck Island (low), Ship Shoal Island (low), Myrtle Island (low), Smith Island (high),

and Fisherman Island (high). For all models, we included island and year as independent ran-

dom effects to prevent pseudoreplication of intra-island sampling units over time.

We used an information-theoretic approach (i.e., Akaike information criterion) by building

an a priori candidate model set of 8 models for early migration period and 16 models for peak

migration period. We ranked these models using Akaike’s Information Criterion for small

sample sizes (AICc), with lower AICc values indicating better-supported models. Here, we

PLOS ONE Red knots and their prey on staging in Virginia

PLOS ONE | https://doi.org/10.1371/journal.pone.0270224 July 1, 2022 8 / 31

https://doi.org/10.1371/journal.pone.0270224


report all models with ΔAICc < 4. Full model sets by prey type and sampling period are in S5

Table. We calculated goodness-of-fit values based on Nakagawa and Schielzeth [77].

Red knot peak count numbers. To estimate a peak count of red knots using the entire

length of Virginia’s barrier islands during peak migration (May 21–27) each year, based on

our observations at random sampling points across the island chain (Raw Data Expansion), we

used the following equation to linearly expand our predictions from our sampling points:

Peak CountRed Knots Per Year2007� 2018 ¼
Total Shoreline Length ðmÞ

P
ðn1þ n2þ . . . n11Þ � 200 m

� ð
P

k1þk2 . . . k11Þ;

where; n1� 11 ¼ number of sampling points on each of the 11 islands; and

k1� 11 ¼ sum of all red knots counted in all sampling points on each of the 11 islands:

Additionally, to account for non-normality and variation in island use, we used zero-inflated

negative binomial regression models (ZINB Model Expansion; Red Knot ~ Island + Year)

using Program R package pscl to predict the number of red knots per sampling point for each

island-year combination. We used this type of model because our data contained more 0s than

expected based on the negative binomial distribution and were overdispersed (�x red knot flock

size range for peak migration: 9–29, variance range: 778–16,247, S1 and S2 Tables). To esti-

mate standard errors for the model predictions, we first used the vector of the regression

parameter estimates and their variance-covariance matrix in a Monte Carlo simulation with

1,000 iterations to separately calculate the mean and variance of the count and zero inflation

parts of the peak count values for each island/year combination on the linear scale. We then

used the delta method to calculate the standard error of each peak count value on the count

scale, as well as the sum of these peak counts across islands within each year.

For both methods, we estimated the length of each island and the total shoreline using aerial

imagery from USDA’s Farm Service Agency’s NAIP orthophotography imagery [63] and our

own GPS estimates from walking the islands during the study. We compared the predictions

from both methods (Raw Data Expansion and ZINB Model Expansion) using a paired t-test

over all years, as the predictions for both methods were normally distributed (Shapiro-Wilk;

W = 0.95, p = 0.57 and W = 0.95, p = 0.68, respectively). We used a Freidman test to determine

if there were differences in red knot numbers by year (2007–2018), controlling for island. We

used Pearson correlation to determine the strength and direction of any potential trends in the

peak count number of red knots in the Virginia over time (2007–2018) and of any relationship

between peak count red knot numbers in Virginia and the peak count numbers in the Dela-

ware Bay staging sites (Shapiro-Wilk; W = 0.92, p = 0.31). We used aerial flight or ground-

based peak count numbers of red knots in Delaware Bay for these comparisons with Virginia

red knot peak count numbers as the Delaware Bay peak count numbers were available for the

entire time period analyzed here (2007–2018), whereas more recent mark-resight based esti-

mates of red knot total staging population numbers are only available since 2011 [78–80].

The resulting counts of red knots in Virginia during peak migration using both methods

make three assumptions and should not be interpreted as total staging population estimates

[29,78] during peak migration until these assumptions are further tested. First, we assumed

that the number of birds entering and exiting Virginia’s barrier islands were equal during peak

migration. While we would need resighting data to formally test this assumption, red knot

behavior demonstrates that the majority of red knots arrive by the start (May 21) of the peak

migration period (May 21–27) and that red knots typically remain on the islands for at least

two weeks, reducing the likelihood of immigration and emigration during this time [25,28,61].

Second, we assumed that red knot detectability and identification were perfect over the

12-years of this study. While ZINB models do not account for imperfect detection or
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identification [81], our field methodology was conducted using only observers trained exten-

sively in shorebird counting and identification, reducing the likelihood of missing or incor-

rectly identifying red knots. Third, our predictions assumed that no birds were double

counted within a given year’s peak migration. We minimized the potential bias of this assump-

tion by moving linearly down the beach’s oceanfront when counting red knots and staying at

least 100 meters away from flocks to prevent dispersal.

Peat and sand tidal sampling of red knots and prey. Shapiro-Wilk normality tests indi-

cated that red knot and all prey abundance data during tidal sampling were not normally-dis-

tributed on peat (red knot: W = 0.60, p< 0.001; all prey: W = 0.75, p< 0.001) and sand (red

knot: W = 0.60, p< 0.001; all prey: W = 0.79, p < 0.001). Therefore, we used Kruskal-Wallis

tests to determine if there were differences in red knot and prey abundances (i.e., crustacean,

blue mussel, coquina clam, miscellaneous prey, all prey) by tide (i.e., high, falling, low, rising).

Spatial tidal sampling of prey. Shapiro-Wilk normality tests indicated that all prey abun-

dance data during spatial tidal sampling were not normally-distributed on peat (W = 0.42,

p< 0.001) and sand (W = 0.86, p< 0.001). Therefore, we used Kruskal-Wallis and Dunn tests

to determine if there were differences in prey numbers (i.e., crustacean, blue mussel, coquina

clam, miscellaneous prey, all prey) by distance to central sampling point (0 meters, 5 meters,

10 meters) throughout the tidal cycle.

For all data analyses described above, we used Program R packages base, stats, dplyr,

glmmTMD, lme4, and dunn.test for the analyses described above [82–86, R Version 3.4.1,

www.r-project.org, accessed 6 May 2019–19 February 2020]. All tests were performed at α =

0.05 probability.

Results

Early migration period

We collected and analyzed 457 core samples on Virginia’s barrier islands during early migra-

tion period from 2008–2018, except 2010, with a mean of 46 points per year (range = 39–61).

Mean red knot flock size per sampling point was 7 (SE = 0.33). Compared to unused sites on

peat banks during early migration period, red knots used sites with more crustaceans

(W = 15,229, p< 0.001), blue mussels (W = 15,322, p< 0.001), miscellaneous prey

(W = 13,822, p< 0.001), and all prey (W = 13,128, p< 0.001; Fig 2A).

Within the barrier islands’ peat substrate during early migration, crustaceans (�x = 17 173/

m2, SE = 2443.73) were the most abundant prey item, followed by blue mussels (�x = 13 166/

m2, SE = 1482.90). Coquina clams were the least abundant prey (�x = 119.86/m2, SE = 25.18)

and were only present in 21% of core samples. Miscellaneous prey, while not the most abun-

dant prey (�x = 2401/m2, SE = 169.16), were the most likely to be present in core samples, with

79% of samples containing miscellaneous prey. Red knots did not use 65% of sampled peat

substrate locations during early migration, while 9% of samples contained no prey. Crusta-

cean, blue mussel, miscellaneous prey, and all prey abundances were greater on peat banks

sampled during the early migration period than combined sand and peat substrates sampled

during the peak migration period (S1 Table). Miscellaneous prey during early migration were

comprised of angel wing clams (63%) and other organisms (37%).

Early migration period–red knot models. The top model containing crustaceans,

coquina clams, miscellaneous prey, and tide (falling, low, rising) best explained the variation

in red knot presence and flock size on peat banks during early migration (AICc weight = 0.30;

Tables 1 and S4). As the number of miscellaneous prey increased (β = -2.15, SE = 0.80), and as

the tide transitioned from rising to low (β = -1.53, SE = 0.57), the probability of a zero count
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(red knot absence) decreased. As the number of crustaceans increased, red knot flock size

increased (β = 0.23, SE = 0.11; Table 2).

Early migration period–prey models. Tide and mean daily water temperature best

explained the variation in crustacean (AICc weight = 0.61), coquina clam (AICc weight = 0.71),

and miscellaneous prey (AICc weight = 0.71) abundances on peat banks during early migra-

tion (Tables 3 and S5). Crustacean, coquina clam, and miscellaneous prey abundances were

highest at low tide (Table 4). As the mean daily water temperature increased, crustacean and

miscellaneous prey abundances increased, while coquina clam abundance decreased (Table 4).

One other model was supported for each prey type (ΔAICc < 4; Tables 3 and S5); however, the

Fig 2. Mean abundance (organisms/m2) of crustaceans, blue mussels, coquina clams, miscellaneous prey, and all

prey captured in 10 cm diameter x 3.5 cm deep cores in sites used and unused by red knots. (a) Mean abundance of

organisms on peat substrate early in red knot migration (May 14–20, 2008–2018; n = 457; ‘early’) and (b) Mean

abundance of organisms on sand and peat substrate at the approximate peak of red knot migration (May 21–27, 2007–

2018; n = 1,322; ‘peak’), Virginia’s barrier islands. � Indicates a difference between used and unused sites (p< 0.05)

based on Wilcoxon rank sum tests with Bonferroni correction.

https://doi.org/10.1371/journal.pone.0270224.g002
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second ranked models contained an additional parameter, suggesting that the additional

parameter (island type) was uninformative; thus, we only considered the most parsimonious

model as supported for each prey type.

Peak migration period

We collected and analyzed 1,322 samples on Virginia’s barrier islands during the peak migra-

tion period (n = 71 peat samples, n = 1,251 sand) from 2007–2018, with a mean of 110 points

per year (range = 93–129; S1 Table). Predicted numbers of red knots in Virginia did not vary

between expansion methods over the study’s duration (paired t-test; t = -0.47, df = 11,

p = 0.65), and thus we present results on the ZINB Model Expansion, as it better accounts for

the non-normal distribution of the raw count data. On average, we predicted that 7,175

(SD = 2,869) red knots used Virginia’s barrier islands during peak spring migration each year.

Peak red knot count numbers in Virginia were highest in 2012 (11,959) and lowest in 2014

(2,857; Fig 3); peak red knot counts in Virginia showed no linear trend over time (t = 1.04,

df = 10, p = 0.32), and there were no differences in mean red knot peak counts by year (Freid-

man chi-squared = 18.01, df = 11, p = 0.08). There was also no correlation between the peak

counts of red knots in Virginia and the Delaware Bay (t = 0.62, df = 10, p = 0.55).

Table 1. Zero-inflated negative binomial mixed-effects regression models predicting red knot presence and flock size on peat substrate early in red knot migration

(May 14–20, 2008–2018, except 2010; n = 457; ‘early’), and on sand and peat substrates at the approximate peak of red knot migration (May 21–27, 2007–2018;

n = 1,322; ‘peak’), Virginia’s barrier islands. All models had the same covariates on both the zero-inflated and count processes and contained “Island” and “Year” as ran-

dom effects.

Period Model DF a AICc
b ΔAICc c wi

d LLe GOFf

Early Coquina Clam + Crustacean + Miscellaneous Prey + Tide 17 1,743.25 0.00 0.30 -853.93 0.08

Crustacean + Miscellaneous Preyg 11 1,744.50 1.25 0.16 -860.96 0.07

All Preyh + Tide 13 1,745.28 2.03 0.11 -859.23 0.07

Coquina Clam + Blue Mussel + Crustacean + Miscellaneous Preyg + Tide 19 1,745.46 2.21 0.10 -852.86 0.08

Blue Mussel + Crustacean + Miscellaneous Preyg 13 1,745.93 2.68 0.08 -859.55 0.07

Crustacean + Miscellaneous Preyg + Distance to Roost 13 1,746.00 2.75 0.08 -859.59 0.07

All Preyh + Distance to Roost + Tide 15 1,746.68 3.43 0.05 -857.79 0.07

Peak Coquina Clam + Blue Mussel + Crustacean + TDF Counti 15 4,103.66 0.00 0.24 -2,036.65 0.07

Coquina Clam + Blue Mussel + Crustacean + Miscellaneous Preyg+ Distance to Roost + TDF Counti

+ Tide

25 4,104.14 0.48 0.19 -2,026.57 0.08

Coquina Clam + Blue Mussel + Crustacean + Miscellaneous Preyg + TDF Counti 17 4,104.21 0.55 0.18 -2,034.87 0.07

Coquina Clam + Blue Mussel + TDF Counti 13 4,104.88 1.22 0.13 -2,039.30 0.07

Coquina Clam + Blue Mussel + Distance to Roost 13 4,106.03 2.37 0.07 -2,039.88 0.07

Coquina Clam + Blue Mussel + Crustacean + Distance to Roost 15 4,106.20 2.54 0.07 -2,037.92 0.07

Coquina Clam + Blue Mussel + Crustacean + Miscellaneous Preyg + Distance to Roost 17 4,106.70 3.04 0.05 -2,036.12 0.07

a DF = Degrees of freedom.
b AICc = Akaike’s Information Criterion corrected for sample size.
c ΔAICc = Difference between a model’s AIC and that of the best fitting model.
d wi

d = Akaike model weight.
e LL = Log-Likelihood.
f GOF = Goodness of fit = [log-likelihood(null model)–log-likelihood(model)]/log-likelihood(null model).
g Miscellaneous Prey = Sum of horseshoe crab eggs (Limulus polyphemus), angel wing clams (Cyrtopleura costata), and other organisms (e.g., insect larvae, snails,

worms).
hAll Prey = Sum of coquina clams + blue mussels + crustaceans + miscellaneous prey.
i TDF Count = Tierra del Fuego Count = Counts of red knots using Tierra del Fuego boreal wintering grounds by year (i.e., as an index for the total number of red knots

in the flyway).

https://doi.org/10.1371/journal.pone.0270224.t001
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Peak counts of red knots as expanded from linear extrapolation of ground counts (dark

gray) at randomly selected 100 m radius circles centered in the swash zone and as expanded (±
95% confidence intervals) from predictions made from a zero-inflated negative binomial

mixed-effects model (Red Knot ~ Island + Year; light gray) from the same ground counts, at

the approximate peak of red knot migration (‘peak migration period’), May 21–27, 2007–2019,

Virginia’s barrier islands.

Mean red knot flock size per sampling point (�x = 17 red knots/point, SE = 0.46) was higher

during peak migration than during the early migration period (�x = 7 red knots/point,

SE = 0.33; S1 Table). Sites used by red knots during peak migration had more crustaceans

(W = 120,030, p< 0.001), coquina clams (W = 88,004, p< 0.001), miscellaneous prey

(W = 140,030, p = 0.003), and all prey (W = 95,570, p< 0.001) than unused sites (Fig 2B).

Table 2. Parameter estimates (β) from the most parsimonious zero-inflated negative binomial mixed-effect regression models predicting red knot presence (zero-

inflated process) and flock size (count process) on peat substrate early in red knot migration (May 14–20, 2008–2018, except 2010; n = 457; ‘early’), and on sand and

peat substrates near the peak of red knot migration (May 21–27, 2007–2018; n = 1,322; ‘peak’), Virginia’s barrier islands. All models contained “Island” and “Year” as

random effects.

Period Model Process Covariate β a SE b LCI c UCI d z value Pr(>|z|) e Significance f

Early Zero-Inflated Intercept 1.62 0.92 -1.19 2.42 0.67 0.51

Coquina Clam -0.21 0.42 -1.02 0.61 -0.50 0.62

Crustacean -1.13 1.10 -3.29 1.03 -1.03 0.30

Miscellaneous Prey -2.15 0.80 -3.72 -0.57 -2.67 0.01 �

Falling Tide -1.03 0.64 -2.28 0.23 -1.60 0.11

Low Tide -1.53 0.57 -2.64 -0.42 -2.70 0.01 �

Count Intercept 1.62 0.59 0.46 2.77 2.74 0.01 �

Coquina Clam -0.02 0.11 -0.24 0.20 -0.17 0.87

Crustacean 0.23 0.11 0.02 0.44 2.10 0.04 �

Miscellaneous Prey 0.15 0.14 -0.13 0.43 1.04 0.30

Falling Tide 0.16 0.50 -0.81 1.13 0.32 0.75

Low Tide 0.67 0.42 -0.16 1.49 1.59 0.11

Peak Zero-Inflated Intercept 0.05 0.51 -0.95 1.04 0.09 0.93

Blue Mussel -8.87 4.11 -16.92 -0.81 -2.16 0.03 �

Coquina Clam -3.08 0.69 -4.42 -1.73 -4.49 <0.001 �

Crustacean -0.27 0.17 -0.62 0.07 -1.56 0.12

TDF Counth -0.49 0.17 -0.82 -0.16 -2.91 0.004 �

Count Intercept 3.16 0.30 2.57 3.75 10.54 <0.001 �

Blue Mussel -0.30 0.10 -0.49 -0.11 -3.05 0.002 �

Coquina Clam 0.02 0.09 -0.15 0.19 0.22 0.83

Crustacean -0.24 0.09 -0.41 -0.07 -2.72 0.01 �

TDF Counth -0.26 0.13 -0.52 -0.01 -2.02 0.04 �

a β = Beta estimate.
b SE = Standard error.
c LCI = Lower 95% confidence interval.
d UCI = Upper 95% confidence interval.
e Pr(>|z|) = Significance level.
f Significance = � = p � 0.05.
g Miscellaneous Prey = Sum of horseshoe crab eggs (Limulus polyphemus), angel wing clams (Cyrtopleura costata), and other organisms (e.g., insect larvae, snails,

worms).
h TDF Count = Tierra del Fuego Count = Counts of red knots using Tierra del Fuego boreal wintering grounds by year (i.e., as an index for the total number of red

knots in the flyway).

https://doi.org/10.1371/journal.pone.0270224.t002
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Across the barrier islands’ intertidal shoreline (including both peat banks and sand), crusta-

ceans were the most abundant prey (�x = 2621/m2, SE = 199.65; Fig 4A) and were collected in

80% of samples (S1 Table). Blue mussels were the least abundant prey (�x = 778/m2,

SE = 259.31; Fig 4A) and were only collected in 4% of samples (S1 Table). Red knots did not

use 77% of sampling locations, while 10% of sampling locations did not contain any prey (S1

Table). With both substrates included, miscellaneous prey was comprised of other organisms

(96%), angel wing clams (2%), and horseshoe crab eggs (2%). When separating sites by sub-

strate from samples collected during this peak migration period, the composition of prey dif-

fered between sand and peat substrates (χ2 = 15,793, df = 4, p< 0.001). Blue mussels

(W = 68,288, p< 0.001) and miscellaneous prey (W = 57,534, p< 0.001) were more abundant

on peat than on sand, while coquina clams were more abundant on sand than on peat

(W = 29,832, p< 0.001; Fig 4B). When separated by substrate, miscellaneous prey were as fol-

lows: peat–other organisms (69%) and angel wing clams (31%); sand—other organisms (97%),

horseshoe crab eggs (2%), and angel wing clams (1%).

Peak migration period–red knot models. The top ranked model containing crustacean,

blue mussel, and coquina clam abundances in Virginia and boreal wintering counts of red

knots in Tierra del Fuego best explained the variation in red knots in Virginia during peak

migration (AICc weight = 0.24; Tables 1 and S4). The probability of a zero count decreased

with increasing blue mussel abundance (β = -8.87, SE = 4.11), coquina clam abundance (β =

-3.08, SE = 0.69), and the number of red knots using Tierra del Fuego boreal wintering

grounds (β = -0.49, SE = 0.17; Table 2). However, red knot flock size decreased with increasing

Table 3. Most parsimonious generalized linear mixed-effects regression models (ΔAICc < 4) predicting crustacean, coquina clam, and miscellaneous prey abun-

dances (organisms/m2) captured in 10 cm diameter x 3.5 cm deep cores on peat substrate early in red knot migration (May 14–20, 2008–2018; n = 457; ‘early’) and

on sand and peat substrate at the approximate peak of red knot migration (May 21–27, 2007–2018; n = 1,322; ‘peak’), Virginia’s barrier islands. All models con-

tained “Island” and “Year” as random effects.

Period Prey Model DFa AICc
b ΔAICc

c wi
d LLe MR2f CR2g

Early Crustacean Tide + Water Temperature 6 110,491.00 0.00 0.61 -55,239.42 0.02 0.57

Tide + Water Temperature + Island Type 7 110,491.90 0.88 0.39 -55,238.83 0.06 0.56

Coquina Clam Tide + Water Temperature 6 1,952.17 0.00 0.71 -969.99 0.01 0.00

Tide + Water Temperature + Island Type 7 1,954.23 2.06 0.25 -969.99 0.01 0.01

Misc. Preyh Tide + Water Temperature 6 8,721.57 0.00 0.71 -4,354.69 0.04 0.69

Tide + Water Temperature + Island Type 7 8,723.40 1.84 0.29 -4,354.58 0.07 0.66

Peak Crustacean Tide + Substrate + Water Temperature 8 61,060.87 0.00 0.56 -30,522.38 0.02 0.22

Tide + Substrate + Water Temperature + Island Type 9 61,061.39 0.51 0.44 -30,521.62 0.05 0.23

Coquina Clam Tide + Substrate + Water Temperature 8 35,893.06 0.00 0.69 -17,938.47 0.04 0.26

Tide + Substrate + Water Temperature + Island Type 9 35,894.64 1.58 0.31 -17,938.25 0.05 0.26

Blue Mussel Tide + Substrate + Water Temperature + Island Type 9 22,816.70 0.00 0.51 -11,399.28 0.06 0.07

Tide + Substrate + Water Temperature 8 22,816.77 0.07 0.49 -11,400.33 . .

a DF = Degrees of freedom.
b AICc = Akaike’s Information Criterion corrected for sample size.
c ΔAICc = Difference between a model’s AIC and that of the best fitting model.
d wi

d = Akaike model weight.
e LL = Log-Likelihood.
f MR2 = Marginal r-squared = Considers only the variance of the fixed effects.
g CR2 = Conditional r-squared = Considers the variance of both fixed and random effects.
h Misc. Prey = Miscellaneous Prey = Sum of horseshoe crab eggs (Limulus polyphemus), angel wing clams (Cyrtopleura costata), and other organisms (e.g., insect larvae,

snails, worms).

https://doi.org/10.1371/journal.pone.0270224.t003
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blue mussel abundance (β = -0.30, SE = 0.10), crustacean abundance (β = -0.24, SE = 0.09),

and the number of red knots using Tierra del Fuego (β = -0.26, SE = 0.13; Table 2). While six

other models had ΔAICc values less than 4, the second ranked model contained ten additional

parameters, suggesting that the additional parameters were uninformative (Arnold 2010; S4

Table); thus, we only considered the most parsimonious model as supported.

Table 4. Parameter estimates (β) from the most parsimonious generalized linear mixed effects regression models predicting crustacean, coquina clam, and miscel-

laneous prey abundances (organisms/m2) captured in 10 cm diameter x 3.5 cm deep cores on peat substrate early in red knot migration (May 14–20, 2008–2018,

except 2010; n = 457; ‘early’), and on sand and peat substrates near the peak of red knot migration (May 21–27, 2007–2018; n = 1,322; ‘peak’), Virginia’s barrier

islands. All models contained “Island” and “Year” as random effects.

Period Prey Covariate β a SE b LCI c UCI d z value Pr(>|z|) e Significance f

Early Crustacean Intercept -4.75 0.81 -6.33 -3.17 -5.89 <0.001 �

Low Tide 0.54 0.01 0.52 0.56 54.90 <0.001 �

Rising Tide -0.95 0.02 -1.00 -0.91 -41.34 <0.001 �

Water Temperature 0.50 0.01 0.48 0.52 47.58 <0.001 �

Coquina Clam Intercept 2.33 1.24 -0.10 4.76 1.88 0.06

Low Tide 0.82 0.13 0.57 1.08 6.29 <0.001 �

Rising Tide 0.74 0.18 0.39 1.09 4.17 <0.001 �

Water Temperature -0.24 0.08 -0.40 -0.08 -2.91 <0.001 �

Misc. Preyg Intercept -0.70 0.63 -1.93 0.54 -1.10 0.27 �

Low Tide 0.10 0.03 0.04 0.15 3.44 <0.001 �

Rising Tide -0.18 0.04 -0.26 -0.11 -4.65 <0.001 �

Water Temperature 0.19 0.02 0.16 0.23 9.73 <0.001 �

Peak Crustacean Intercept 1.47 0.25 0.99 1.96 5.97 <0.001 �

Falling Tide 0.16 0.02 0.12 0.21 6.95 <0.001 �

Low Tide 0.76 0.02 0.71 0.80 31.66 <0.001 �

Rising Tide 0.30 0.02 0.26 0.35 12.68 <0.001 �

Sand Substrate -0.90 0.02 -0.95 -0.86 -41.90 <0.001 �

Water Temperature 0.12 0.01 0.10 0.14 10.66 <0.001 �

Coquina Clam Intercept 5.64 0.45 4.77 6.52 12.62 <0.001 �

Falling Tide 0.84 0.03 0.78 0.90 26.61 <0.001 �

Low Tide 0.83 0.04 0.76 0.91 22.93 <0.001 �

Rising Tide 0.51 0.03 0.45 0.57 15.67 <0.001 �

Sand Substrate 0.87 0.07 0.73 1.01 12.27 <0.001 �

Water Temperature -0.34 0.02 -0.37 -0.30 -19.14 <0.001 �

Blue Mussel Intercept -13.54 1.60 -16.67 -10.40 -8.47 <0.001 �

Falling Tide 1.05 0.18 0.69 1.41 5.73 <0.001 �

Low Tide 2.90 0.19 2.54 3.27 15.69 <0.001 �

Rising Tide 2.21 0.19 1.83 2.58 11.67 <0.001 �

Sand Substrate -1.51 0.03 -1.56 -1.46 -55.06 <0.001 �

Water Temperature 0.59 0.07 0.46 0.72 8.85 <0.001 �

a β = Beta estimate.
b SE = Standard error.
c LCI = Lower 95% confidence interval.
d UCI = Upper 95% confidence interval.
e Pr(>|z|) = Significance level.
f Significance = � = p � 0.05.
g Misc. Prey = Miscellaneous Prey = Sum of horseshoe crab eggs (Limulus polyphemus), angel wing clams (Cyrtopleura costata), and other organisms (e.g., insect larvae,

snails, worms).

https://doi.org/10.1371/journal.pone.0270224.t004
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Peak migration period–prey models. Tide, substrate, and mean daily water temperature

best explained the variation in crustacean (AICc weight = 0.56), coquina clam (AICc

weight = 0.69), and blue mussel (AICc weight = 0.49) abundances during peak migration

(Tables 3 and S5). Crustacean and blue mussel abundances were highest at low tide, while

coquina clam abundances were highest at falling and rising tides. Crustaceans and blue mus-

sels were more abundant on peat, while coquina clams were more abundant on sand. As the

mean daily water temperature increased, crustacean and blue mussel abundances increased,

while coquina clam abundance decreased (Table 4). While the blue mussel model with tide,

substrate, mean daily water temperature, and island type (AICc weight = 0.51; S5 Table) car-

ried the most weight, because there was no difference in blue mussel abundance on low vs.

high elevation islands, we considered the second ranked model described above as most parsi-

monious (Arnold 2010).

Peat and sand tidal sampling. Crustacean abundance varied by tide during peat tidal

sampling (χ2 = 13.03, df = 2, p = 0.001), with crustacean abundance being highest at low tide.

Red knot flock size (χ2 = 36.90, df = 3, p< 0.001) and coquina clam (χ2 = 19.51, df = 3,

p< 0.001) and blue mussel (Kruskal-Wallis; χ2 = 13.46, df = 3, p = 0.003) abundances varied

by tide during sand tidal sampling, with red knot flock size and blue mussel and coquina clam

abundances being highest at rising tide.

Tidal spatial sampling. Only all combined prey abundance varied by distance (5 m, 10

m) from a central sampling point (0 m) during peat tidal spatial sampling conducted in 2019

(Kruskal-Wallis; χ2 = 6.90, df = 2, p = 0.03). The overall combined prey abundance differed

between 0 m and 10 m, with all prey being higher at 0 m (z = 2.63, p = 0.01; Fig 5).

Discussion

Site selection by red knots and prey availability varied by substrate and tide. While most (~

90%) sampling locations contained prey, red knots did not use 64–77% of all sampling loca-

tions, suggesting that red knots use a small proportion of habitat containing prey at any given

time in Virginia. The sites that red knots used contained higher prey abundances than unused

sites, supporting the work of previous studies [31,32,41,87,88]. These relationships suggest that

Fig 3. Peak counts of red knots.

https://doi.org/10.1371/journal.pone.0270224.g003
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red knots decrease energy expenditure and maximize foraging efficiency by foraging in loca-

tions that are most profitable (i.e., those that provide the highest abundance of prey in the

shortest period [41,89]). Prior work in other systems has also consistently demonstrated that

red knots likely feed on prey that are most digestible [90–94]. For example, in the Dutch Wad-

den Sea site, which closely resembles the intertidal habitat of Virginia’s barrier islands, red

knots selected juvenile edible cockles (Cerastoderma edule) that had thinner shells and propor-

tionately high flesh content to maximize energy intake rates and reduce processing time (i.e.,

shell digestion [95,96]). Other studies have also demonstrated that shorebirds such as sander-

ling (Calidris alba), Eurasian oystercatchers (Haematopus ostralegus), and dunlin (Calidris
alpina) select prey that maximize their caloric intake [97–99]. Additional study into the energy

content and digestibility of all prey available to red knots in Virginia would help further clarify

the relationship among red knots, prey, and habitat selection.

Fig 4. Red knot flock size and mean prey abundance for combined substrates and individually by peat bank and

sand substrate for samples collected during red knot peak migration (21–27 May). Mean red knot flock size per 100

m radius semicircle on the water line and mean abundance (organisms/m2 ± 95% CI) of crustaceans, blue mussels,

coquina clams, miscellaneous prey, and all prey captured in 10 cm diameter x 3.5 cm deep cores on (a) peat and sand

substrates combined (n = 1,322) and on (b) peat banks (n = 71) and sand (n = 1,251) separately at the approximate

peak of red knot migration (‘peak migration period’), May 21–27, 2007–2018, Virginia’s barrier islands. � Indicates a

difference (p < 0.05) in red knot flock size and prey abundances between peat and sand substrates based on Wilcoxon

rank sum tests with Bonferroni correction. Note: y-axis scales differ between (a) and (b).

https://doi.org/10.1371/journal.pone.0270224.g004
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While the probability of at least one red knot was greater at sites with more prey, red knot

flock size did not consistently relate to prey abundance. Most prey abundances (i.e., blue mus-

sels, crustaceans, miscellaneous, and all prey) were highest during early migration period

when only peat substrates were sampled due to logistical constraints, while red knot flock size

was highest during peak migration period when more samples fell on sand than peat substrate

as sampling was done irrespective of tide state. This relationship is likely an artifact of the dif-

ferent sampling approaches used during early migration, when we only sampled random

points on peat substrate, and peak migration, when we sampled random points on both peat

and sand, as we found prey abundance to be higher in peat than in sand. Therefore, direct

comparisons of red knot and prey numbers between early and peak migration periods, without

accounting for substrate type, cannot be made under our current sampling design. If logistical

constraints could be released so that we could equally sample both peat and sand substrates

during both the early and peak migration periods, then more direct comparisons between red

knot numbers and prey abundances on the two substrate types could be made.

While crustaceans positively influenced red knot flock size during the early migration

period, crustaceans and blue mussels were negatively related to red knot flock size during the

peak migration period, likely because these two prey species live predominantly in peat sub-

strate. Although these red knot flock size—prey relationships may seem counterintuitive, as

we would expect larger red knot flock sites at sites with more prey, the discrepancy may be

influenced by five factors. First, we did not sample red knots at high tide or on sand substrate

during the early migration period, which may have negatively biased our flock size estimates

during early migration by not counting birds that roost, typically on sand, in large numbers at

high tide [28,100]. Second, some of the relationships between red knot flock size and prey dur-

ing peak migration (i.e., the negative correlation between red knot flock size and blue mussels

and crustaceans) may be habitat correlates, related to the propensity of some prey to settle on

peat substrate that were sampled less during peak migration than early migration, rather than

truly negative relationships [32]. Third, flock size alone is not directly related to the overall

number of birds using the islands. Fourth, prey may have been depleted at some sites during

peak migration before red knots were counted [32,33], and fifth, site suitability varies in the

intertidal zone. For example, some peat banks are located far above the low-tide line and thus

become dry throughout the tidal cycle. These peat banks do not support the same abundances

of prey as peat that remains saturated throughout the tidal cycle. While the abundance of prey

may not consistently affect flock size within a sampling period, consistent prey availability

across the migration window may affect overall red knot abundance on the islands [8]. For

example, we designed our study to conduct sampling during early migration (May 14–20) and

peak migration (May 21–27) using historical data that suggested these two weeks corre-

sponded to early and peak migration for red knots using Virginia and Delaware Bay staging

sites [26,29,101]; thus, excluding any effects of prey, we would expect more red knots to use

Virginia’s barrier islands during peak migration period than during early migration period,

regardless of flock size estimates.

Consideration of the multiple drivers of red knot flocking behavior also offers insight into

our ability to explain red knot presence better than red knot flock size at a given point in

Fig 5. Mean prey abundances at distances from 0 m to 10 m from the main sample point during tidal spatial

sampling on peat banks. Mean (a) coquina clam, (b) blue mussel, (c) crustacean, (d) miscellaneous prey, and (e) all

prey abundances (organisms/m2) captured in 10 cm diameter x 3.5 cm deep cores on peat banks during peat tidal

spatial sampling, May 17, 2019, Myrtle Island, Virginia’s barrier islands. Distance represents the distance from the

center sampling point (0 meters). � Kruskal-Wallis and Dunn tests found a difference (p < 0.05) in all prey abundance

between 0 m and 10 m.

https://doi.org/10.1371/journal.pone.0270224.g005
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Virginia. For example, Folmer et al. [102] found that the predictive ability of resource-related

(e.g., prey) models on the spatial distribution of foraging shorebirds decreased with the ten-

dency of a species to flock. As social birds [95,103], red knots prefer to forage in non-random

groupings (i.e., flocks) and therefore likely base their foraging decisions at least partly on con-

specific attraction and perceptions [102,104]. These conspecific interactions may help red

knots determine food availability and the presence of predators at a given site [102]. Addition-

ally, peregrine falcons (Falco peregrinus), predators of red knots, live on Virginia’s barrier

islands, where shorebirds provide an estimated 52% of the peregrine falcon’s diet [105,106].

Thus, conspecific interactions may also cause red knots to select a site simply because others

do so to maximize predator detection, regardless of prey availability (“many eyes hypothesis”

[107,108]).

During peak migration, red knot presence and flock size were also influenced by boreal

wintering red knot counts in Tierra del Fuego, which were used here as an index of red knots

available in the flyway to stage in Virginia. The positive relationship between Tierra del Fuego

counts and red knot presence suggests that the more birds in the boreal wintering grounds,

and presumably the flyway, the more sites in Virginia will be occupied in a given year. The

negative relationship between Tierra del Fuego boreal wintering counts and flock size during

peak migration period in Virginia suggests that red knots occupy more sites in Virginia, but in

smaller flocks, when Tierra del Fuego counts are higher. Birds may separate into smaller flocks

to exploit more foraging sites, while simultaneously decreasing competition within a site [109].

However, that prediction is in contrast to numerous other studies that suggest that larger flock

sizes may help animals determine site suitability based on the abundance of available prey

[88,110–112]. Further assessment of the relative contribution of other boreal wintering popu-

lations to the Virginia staging site, as Smith [69] began to detail, could help elucidate this per-

plexing negative relationship between red knot numbers in Tierra del Fuego and flock size in

Virginia. It is possible that the total numbers of red knots coming to Virginia from other boreal

wintering sites in the flyway varies annually such that counts of red knots in Tierra del Fuego

cannot fully explain both the presence and flock size of red knots in Virginia.

Blue mussel and miscellaneous prey densities were higher in peat than in sand substrate.

Some prey, like blue mussels, require a substrate (e.g., peat) on which to attach [113]. Other

prey that do not attach to the substrate may prefer to live in peat to more easily hide from pred-

ators in dense vegetation and/or because they consume various decaying plant and animal

material found in the peat banks [114–117]. In contrast, coquina clam density was higher in

sand than in peat. Coquina clams prefer sand substrate that enables them to migrate both verti-

cally and horizontally across the shoreline throughout the tidal cycle, primarily migrating

shoreward during rising tides, seaward during falling tides, and remaining idle during low and

high tides [118,119]. These migrations likely decrease predation risk by keeping the clams

mobile, by preventing them from becoming stranded at high tide, and also by increasing the

clams’ foraging efficiency through reduced risk of resource depletion within one area

[120,121]. However, these prey-substrate relationships do not account for the abundance of

prey across the entire intertidal zone, only the abundance of prey found in collected core sam-

ples. Because peat banks comprise only ~ 6% of the intertidal zone each year, while sand com-

prises the remainder of the intertidal zone [41,55], the cumulative abundance of prey in sand

is likely much greater than the abundance of prey in peat on the entire barrier island chain.

However, both substrates are important in supporting different types of prey and provide prey

at different times in the tidal cycle. For example, blue mussels and crustaceans were captured

in the highest densities within two hours of low tide, corresponding to the time of greatest peat

substrate exposure, and coquina clams generally were most abundant during the falling and

rising tides when clams engage in tidal migrations. Red knot flock size was highest at low tide
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during early migration when only peat was sampled. Red knot flock size and prey abundances

were also generally highest around the rising tide during sand tidal sampling. While prey var-

ied by substrate and tide, and despite other studies finding that invertebrate prey abundance is

highly variable across space [122–124], the only difference in prey abundances within 10

meters of a central sampling point occurred when all prey were combined during peat tidal

sampling. The lack of consistent differences over space suggests that larger scale covariates

(e.g., ocean temperature) may affect prey abundance and distribution throughout the tidal

cycle or that the spacing we selected (5 m and 10 m from a central point) were inconsistent

with prey spatial variation.

Crustaceans were abundant on both peat and sand. Heller [42] found that despite the high

abundance of crustaceans across the intertidal landscape of Virginia’s barrier islands, red

knots selected crustaceans less than expected given their availability. If ocean temperatures

continue to warm [125,126], causing further range contraction and decline in the abundance

of blue mussels in Virginia [42], red knots may need to rely more heavily on abundant crusta-

ceans or other prey that we grouped in the miscellaneous category (horseshoe crab eggs, angel

wing clams, and other organisms (e.g., insect larvae, snails, worms)) in Virginia. However,

coquina clams may become larger and/or more abundant in Virginia due to ocean warming,

as they grow faster and mature earlier in warmer water [127]. Previous studies estimating the

caloric value of crustaceans (Corophium sp.) consumed by redshank (Tringa tetanus), a shore-

bird of similar size to red knots, found that crustaceans contained on average 18.20 kJ/g ash-

free dry weight (AFDW, [128]). In another study of the energetic content of shorebird prey in

the Dutch Wadden Sea, Zwarts and Wanink [129] found that the same species of blue mussels

consumed by red knots in Virginia, Mytilus edulis, had the highest energetic content among

ten tidal invertebrates measured, with blue mussels having on average about 23.4 kJ/g AFDW.

These data demonstrate that crustaceans are less energetically dense than bivalves although

still a potentially energetically-rich food resource for red knots; however, red knots’ will likely

continue to select bivalves as long as they are available given their high energetic content and

the tactile foraging adaptation of red knots that enables them to efficiently capture bivalve prey

[130,131].

The peak counts of red knots using Virginia’s barrier islands were variable over the study’s

duration, though no positive or negative linear trend existed. We acknowledge that our

approach to predict the abundance of red knots in Virginia during peak migration was imper-

fect, but we minimized potential biases associated with these assumptions by sampling red

knots during peak migration (May 21–27) after most have arrived on the islands and when

they tend to stay for at least 2 weeks [29], by having only highly trained observers identify and

count red knots, and by staying at least 100 meters away from flocks to prevent dispersal. Addi-

tionally, our average peak prediction of 7,175 red knots per year (2007–2018) was close to the

average peak red knot count obtained using aerial surveys from 2007–2014 (�x = 6,788 red

knots per year [23,125,126]. Our average peak count of red knots each year (�x = 6,521 red

knots per year; 2007–2014) was also close to aerial peak count estimates when we averaged

only our ground count predictions for the years during which aerial counts were also made (�x
= 6,788 red knots per year, 2007–2014 [132]). We are further encouraged by our ability to

detect trends in red knot numbers using these ground count predictions as our observed

decrease in peak counts of red knots from 11,959 in 2012 to 6,670 and 2,857 in 2013 and 2014

respectively also coincided to declines observed via aerial surveys in those years (8,482 in 2012

to 6,200 and 5,547 in 2013 and 2014 respectively, [133]). Thus, our ground count estimates of

red knot numbers and the annual aerial flight counts of red knots during the years of 2007–

2014 [132,133] showed a similar mean peak count and similar trends in numbers despite the

varied methods and assumptions of each.
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Cumulatively, our study suggests that the number of red knots in Virginia result from com-

plex interactions both on the staging site and beyond. Previous studies of red knot population

trends (including Calidris canutus rufa and Calidris canutus canutus) demonstrated that red

knot populations often cycle within 3 to 4-year periods. Years of high lemming population

sizes resulted in high reproductive output of red knots and consequently higher red knot num-

bers the following 1–3 years [35,134,135]. However, in the late 1990s, the lemming cycle in

Europe was altered [136–138]. It is less clear whether lemming cycles changed in North Amer-

ica; however, if they did, any lemming cycle cessation or alteration may have contributed to

the rufa red knot’s population decline in the early 2000s [35]. Predicted red knot numbers in

Virginia during this study did not visibly follow the same 3–4 year cycle as seen in Sutherland

[135] and Fraser et al. [35], but there were repeated highs and lows. An examination of poten-

tial cyclic patterns may be warranted if long-term modelling continues to show variable trends

over time.

The annual fluctuations in the red knot population that migrates through the mid-Atlantic

region [35,133] and the proportion of red knots that use the Virginia staging site may be

related to the quality of Delaware Bay and Virginia staging site habitat within a given year. Our

long-term findings regarding the relationship between red knots and their prey in Virginia

only explain some of the variation in red knot site use and flock size. Because there is no evi-

dence of extreme red knot population fluctuations since their decline in the mid-1990s (this

study, [22,23]), and because prey abundance varies over space and time, we speculate that any

variation in the number of red knots using the Virginia barrier islands is at least partly due to

the abundance and quality of prey at other locations across the annual cycle, including other

staging and stopover areas throughout the Western hemisphere. The factors that affect the

presence, flock size, and abundances of long-distance migrants using migratory staging sites

grounds are not straightforward, as factors across their boreal wintering, breeding, and other

staging grounds likely affect birds year-round [16,17]. Thus, additional studies that link poten-

tially relevant variables across each area within the range that red knots use during their life-

cycle are warranted to best design successful management practices and develop conservation

priorities range-wide [139].

Conclusions

Red knots historically frequented a larger region in coastal North America from Florida to

Massachusetts as migratory stopover habitat than they do today [12,27]. The largest of the red

knot spring migratory staging sites now are primarily found on the Delaware Bay and Virgin-

ia’s barrier islands (~ 50–70% of the annual spring migration population [20,23,26,29]).

Because these staging grounds support high percentages of the entire migratory population,

any deviation in the historic norm of habitat and prey availabilities may have lasting popula-

tion-wide implications for red knots and other long-distance migratory shorebirds [140].

Our research suggests that although blue mussels and coquina clams are important prey

resources for red knots, counts of red knots in boreal wintering grounds and counts of other

types of prey, such as crustaceans, may also be important predictors of red knot presence and

flock size in Virginia. To continue maximizing the availability of red knot prey across the tidal

cycle, and in particular the availability of blue mussel prey which requires peat bank substrate

to settle in high densities, ongoing management on Virginia’s barrier islands that discourages

beach stabilization and nourishment projects and allows the natural processes of overwash and

island transgression should continue. Beach nourishment buries invertebrate prey that live

within the top layers of sand and peat, causing prey mortality, altered prey community assem-

blages, and/or a reduction in foraging shorebirds’ ability to access prey [141–147]. Beach
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stabilization and nourishment stall coastal shoreline erosion and are often used on barrier

islands to prevent island transgression [142,148,149]. However, peat banks cannot form when

islands are unable to transgress over themselves onto back-side marsh [47,141]. Therefore,

beaches that are nourished or otherwise managed to prevent erosion generally lack peat banks.

Over time, the loss of peat bank habitat would likely decrease the abundance of peat-reliant

red knot prey species, like blue mussels and crustaceans.

Supporting information

S1 Fig. Sample points for 2018, taken from [51], as an example for other years on the Vir-

ginia Coast Reserve Long Term Ecological Research Site on 11 barrier islands off the East-

ern Shore of Virginia. We sampled red knots and invertebrate prey at randomly generated

points, each separated by at least 200m, on 11 barrier islands. Sample points collected during

the early migration period (peat substrate only, May 14–20, 2018) are shown in dark blue

whereas sample points during the peak migration period (peat and sand substrate, May 21–27,

2018) are shown in light blue on the images. From north to south, samples were collected on

Assawoman Island, Metompkin Island, Cedar Island, Parramore Island, Hog Island, Cobb

Island, Wreck Island, Ship Shoal Island, Mink and Myrtle Island, Smith Island and Fisherman

Island. Basemap aerial island imagery from 2021 was taken from the United States Department

of Agriculture’s National Agriculture Imagery Program (NAIP), available at [50] from the

Aerial Photography Field Office. The geographic coordinates and details on all sample points

from 2007–2018 can be found in [51].
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S1 Table. Mean red knot flock size per 100 m radius semicircle on the water line and mean

abundance (organisms/m2 ± SE) of coquina clams, blue mussels, crustaceans, miscella-

neous prey, and all prey captured in 10 cm diameter x 3.5 cm deep cores on peat banks

early in red knot migration (May 14–20, 2008–2018; n = 457; ‘early’) and on sand and peat

banks at the approximate peak of red knot migration (May 21–27, 2007–2018; n = 1,322;

‘peak’), Virginia’s barrier islands.

(DOCX)

S2 Table. Mean red knot flock size and standard errors per 100 m radius semicircle on the

water line on peat banks early in red knot migration (May 14–20, 2008–2018; n = 457;

‘early’) and on sand and peat banks at the approximate peak of red knot migration (May

21–27, 2007–2018; n = 1,322; ‘peak’), Virginia’s barrier islands.

(DOCX)

S3 Table. Pearson correlation coefficients for all continuous covariates on peat banks early

in red knot migration (May 14–20, 2008–2018; n = 457; ‘early’) and on sand and peat

banks at the approximate peak of red knot migration (May 21–27, 2007–2018; n = 1,322;

‘peak’), Virginia’s barrier islands. Highly correlated covariate combinations are represented

by values > 0.7 and< -0.7 (Booth et al. 1994, Anderson et al. 2001).

(DOCX)

S4 Table. Full model sets for zero-inflated negative binomial mixed-effects regression

models predicting red knot presence and flock size on peat banks early in red knot migra-

tion (May 14–20, 2008–2018, except 2010; n = 457; ‘early’), and on sand and peat substrates

at the approximate peak of red knot migration (May 21–27, 2007–2018; n = 1,322; ‘peak’),
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